

Earned Schedule ...application to Project Management

23-24 November 2011 Valencia, Spain Walt Lipke

PMI_® - Oklahoma City +1 405 364 1594 waltlipke@cox.net www.earnedschedule.com

• • • Abstract

A review of Earned Schedule, focusing on project management control areas for which the methodology provides an advance in practice.

Overview

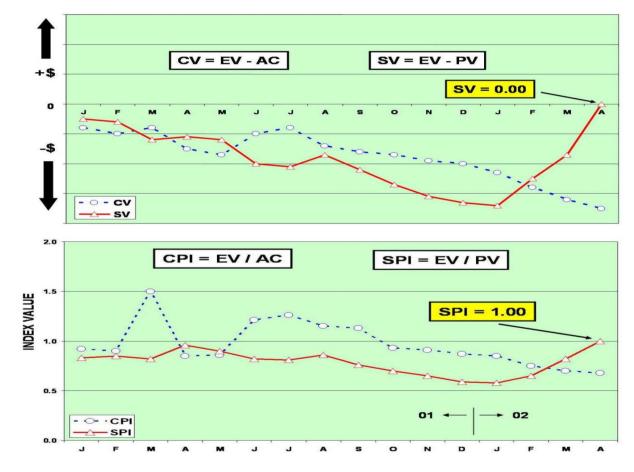
- Background
- Review of ES Metric
- Indicators & Terminology
- Forecasting & Prediction
- Project Control
- Schedule Adherence
- Rework
- Application Aids
- Supplemental Remarks
- Summary

• • Background

"We need to maintain our attention on schedule delivery. Data tells us that since July 2003, real cost increase in projects accounted for less than 3 percent of the total cost growth.

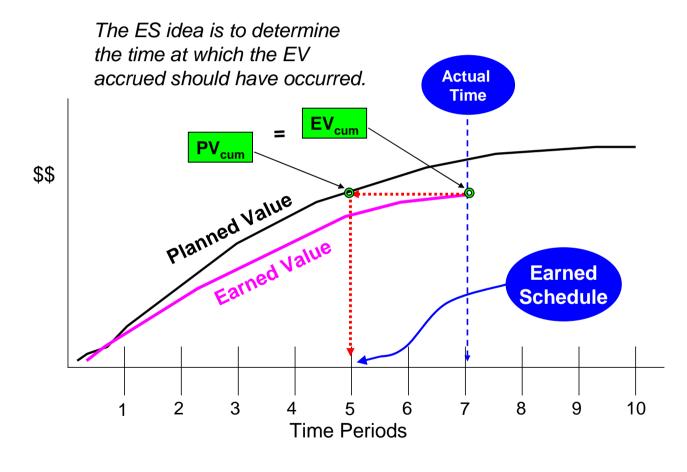
...<u>Therefore, our problem is not cost, it is</u> <u>SCHEDULE</u>."

- Dr. Steve Gumley, CEO


Defence Materiel Organization (Australia)

Quote taken from DMO Bulletin, July 2006, Issue 61, page

• • Background



Copyright © Lipke 2011

EVM Europe 2011

• • ES Metric

••• ES Metric

• ES measure requires the PMB and EV accrued

• Determined from formula, ES = C + I

where C is number of periodic time units of the PMB for which $EV \ge PV_C$

and I = $[(EV - PV_C) / (PV_{C+1} - PV_C)] * 1$ period

• At completion, just as EV = BAC, ES = PD where PD = Planned Duration

7

• • ES Indicators

• The ES measure leads to reliable indicators for the entire duration of the project

$$SV(t) = ES - AT$$

SPI(t) = ES / AT
$$\left.\right\}$$
 cumulative

$$SV(t)_{n} = (ES_{n} - ES_{n-1}) - 1$$

SPI(t)_n = (ES_n - ES_{n-1}) / 1 } periodic

where AT is the number of status periods

ES Terminology

Metrics	Earned Schedule	ES _{cum}	ES = C + I number of complete periods (C) plus an incomplete portion (I)
	Actual Time	AT _{cum}	AT = number of periods executed
Indicators	Schedule Variance	SV(t)	SV(t) = ES – AT
	Schedule variance	SV(t)%	SV(t)% = (ES – AT) / ES
	Schedule Performance Index	SPI(t)	SPI(t) = ES / AT
	To Complete Schedule Performance Index	TSPI	TSPI = (PD – ES) / (PD – AT)
			TSPI = (PD – ES) / (ED – AT)
Predictors	Independent Estimate at Completion (time)	IEAC(t)	IEAC(t) = PD / SPI(t)
			IEAC(t) = AT + (PD - ES) / PF(t)
	Variance at Completion	VAC(t)	VAC(t) = PD - IEAC(t) or EFD

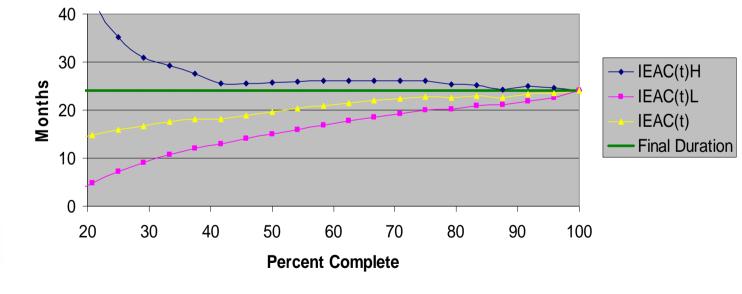
9

• • Forecasting

- EVM forecast of final cost: IEAC = BAC / CPI
- ES forecast of project duration:

IEAC(t) = PD / SPI(t)

- Goodness of forecast has been verified by
 - Application
 - Statistical testing
 - Simulation



 Useful to compare forecast from Critical Path EV data to project forecast

• • Forecasting

• Range of possible outcomes – confidence limits

Project #1 - Schedule

Prediction

 Calculation of TSPI provides information concerning whether to attempt corrective action or negotiate a change with the customer

TSPI Value	Predicted Outcome
≤ 1.00	Achievable
> 1.10	Not Achievable

Project Control

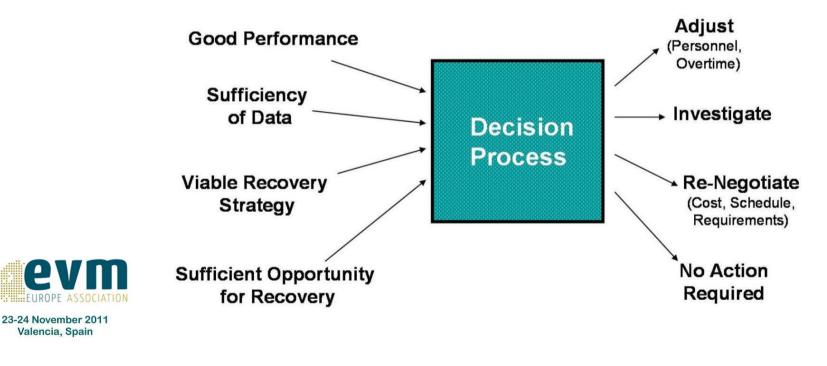

• Using EVM & ES leads to general strategies

СРГ ¹	SPI(t) ⁻¹	Recommended Action	
Green	Green	Reward Employees	
Green	Yellow	Increase Overtime	
Green	Red	Increase Overtime or People	
Yellow	Green	Decrease Overtime	
Yellow	Yellow	Review & Adjust Assignments	
Yellow	Red	Adjust Assignments; Consider Negotiation (Schedule)	
Red	Green	Decrease Overtime or People	
Red	Yellow	Adjust Assignments; Consider Negotiation (Funding)	
Red	Red	Negotiation (Funding/Schedule/Rqmts); Causal Analysis	

Project Control

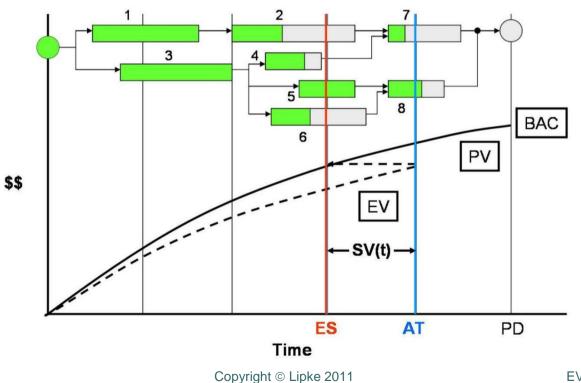
Improved project recovery tactics

14


Copyright © Lipke 2011

EVM Europe 2011

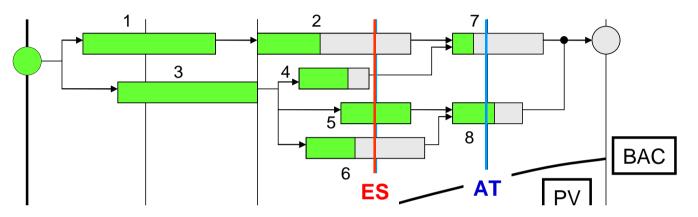
Project Control


• Better project management decisions

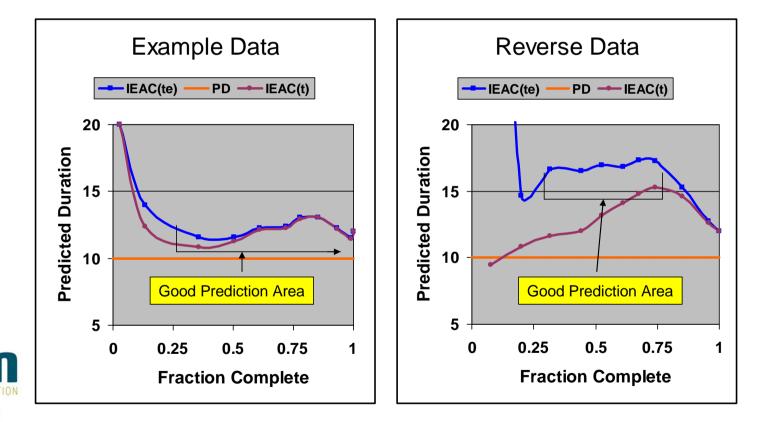
Schedule Adherence

• ES facilitates measuring how well project execution follows the plan

Schedule Adherence


- Independent from schedule efficiency (SPI(t))
- Measured as ratio of EV conforming to the PV which should have been earned (P-Factor)
- Allows analysis which identifies tasks having impediments or constraints
- Identifies tasks which are likely to have future rework and enhances forecasting
- Leads to Schedule Adherence Index and improved control

• Facilitates calculation of induced rework


SA - Analysis Example

Task	PV	PV@ES	EV@AT	EV - PV	I/C or R
1	10	10	10	0	
2	12	9	5	-4	I/C
3	10	10	10	0	
4	5	5	3	-2	I/C
5	5	2	5	+3	R
6	8	4	3	-1	I/C
7	7	0	1	+1	R
8	5	0	3	+3	R
Total	62	40	40	0	

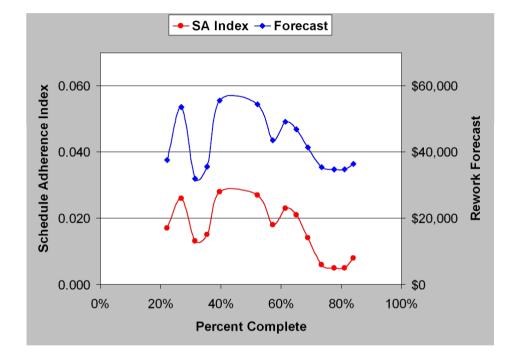
••• Rework

Schedule Adherence Index
SAI = R / (BAC – EV)
where R = f(P, EV, BAC)

- SAI is useful for detecting trends ...thus a management tool for gauging actions taken
 - SAI increasing with $EV \Rightarrow SA$ worsening
 - SAI decreasing with $EV \Rightarrow SA$ improving
- Allows for calculation of out of sequence EV
- Facilitates forecast of project rework cost

Rework

- Ability to determine amount of out of sequence EV and forecast rework cost heightens management attention to schedule execution
- Increases ability of oversight functions to identify EV "gaming"
- Improved schedule adherence hypothesized to improve both cost and schedule performance efficiencies



23-24 November 2011 Valencia, Spain

21

Rework - Real Example

22

- BAC \cong \$2.5 million, P = 0.930 \Rightarrow 0.995
- $CPI \cong 1.05, SPI(t) \cong 0.98$
- EV(r) \cong \$80K, Rework Forecast < \$40K

Application Aids

- Calculation of ES, indicators, and forecast available from ES website (es calculator page) and several EVM tools
- Small Projects (Down Time & Stop Work)
 - ES website
- Range of possible outcomes (confidence limits)
 ES website
- EUROPE ASSOCIATION 23-24 November 2011 Valencia, Spain
- Schedule Adherence (P-Factor) ES website, Project Flight Deck, and ProTrack
 - Out of Sequence EV & Rework *ES website*

23

• • • Summary

- Managing schedule may be more difficult than cost and has more repercussions
- ES is derived from the PMB and EV accrued
- ES makes possible reliable schedule performance indicators, forecasting, prediction
- Amplifies ability to control project using EVM & ES

- Facilitates identifying process logjams and assess & minimize rework
- Application aids are available and coming

Supplemental Remarks

- Data for analysis comes from EVM ...no new data is required
- Provides top down approach to assessing schedule performance
- Equally usable for re-planned projects, and small projects having stop work and down-time conditions

Supplemental Remarks

• ES methodology is growing

- ES website is receiving \cong 40K hits per month
- Project management and EVM books now include ES
- Included in university coursework & research
- Evidence of use is global
- Usage is occurring in several industries
- Included in $PMI_{\mathbb{B}}$ EVM Practice Standard (Oct 2011)

Supplemental Remarks

- ES has had its share of detractors ...and proponents, as well
- British philosopher, John Stuart Mill, once made this observation that new ideas pass through three phases of denial:

<u>First</u> – They are wrong

<u>Second</u> – They are against religion

<u>Third</u> – They are old news, trivial, common sense, and we all would have thought of them if we had had the time, money, and interest

23-24 November 2011 Valencia, Spain

27

References

- "Earned Schedule Application to Small Projects," *PM World Today*, April 2011 (Vol. XIII, Issue IV)
- "Schedule Adherence and Rework," <u>The Measurable News</u>, 2011 Issue 1: 9-14
- Earned Schedule, Rayleigh, NC, Lulu Publishing 2009
- Earned Schedule Website: www.earnedschedule.com

